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Abstract--The flow pattern and the temperature field in empty and partitioned, two-dimensional (2D) 
rectangular enclosures were studied numerically at Rayleigh numbers 10 ~° 1012, using an algebraic model 
for turbulent heat transport 0uv The geometries considered, with partial, downward-extending and full 
adiabatic and conductive vertical partitions, imitate neighbouring rooms in real buildings with a doorway 
in between. Two closure levels were applied in parallel: three- and four-equation models, k-e-0 z and k-e- 
~-e0, both incorporating the low-Re-number modifications, which allow integration up to the wall and 
prediction & turbulence transition. The computations confirmed earlier experimental findings that in this 
range of Ra numbers the flow becomes turbulent, but the turbulence remains confined to only some 
regions of ttTe enclosure. Noticeable improvements in capturing details of turbulence field, particularly at 
transitional Rayleigh numbers, are achieved with the algebraic model for turbulent heat transport 0u~, with 
both the three- and four-equation models, as compared with eddy diffusivity hypotheses. The paper presents 
some results for the mean flow and turbulence field, as well as for Nusselt number, in several cases of 
undivided and partitioned enclosures at transitional and higher Ra numbers and for several combinations 

of boundary conditions, including heating from sides and from below. 

1. INTRODUCTION 

Typical values of Rayleigh numbers, encountered in 
building enclosure,;, are around 101° to l012. In cases 
with heating and cooling from sides, these values of 
Rayleigh number are just sufficient to promote lami- 
nar to turbulent transition along the vertical walls, but 
the turbulence remains usually confined to relatively 
narrow zones in the downstream portions of the 
boundary layer along each non-isothermal wall, or 
trapped in the regLons downstream of the partition. 
Transition to turbulence causes a substantial increase 
in the heat transfer: coefficient. Because the phenom- 
enon of transitiorL is essentially unsteady and not 
reproducible, experimentally obtained heat transfer 
correlations available in the literature for this range 
of Ra numbers, differ considerably. Even if the time 
averaged location of the transition could be defined, 
it depends on the Payleigh number, so that scaling of 
the heat transfer for transitional Ra numbers in terms 
of conventional non-dimensional similarity par- 
ameters is generally very uncertain. Conductive or 
adiabatic partitions between the two zones of the 
enclosure, simulating the wall between the neigh- 
bouring rooms, wkh an opening imitating a doorway 
or a window, bring in additional uncertainties. Par- 
titions affect sub,;tantially the flow pattern, and, 
depending on their position and size, may enhance or 

damp the turbulence and will in any case cause a 
redistribution of turbulence properties. 

The flow pattern and turbulence intensity have a 
direct effect upon the indoor air quality and human 
comfort. In addition, transition to turbulence in 
boundary layers and a consequent change in the heat 
transfer rate will affect the moisture transport through 
the walls as well as vapour condensation influencing 
in turn the durability of the building structure. Fire 
and smoke spread are directly affected by the internal 
air circulation and turbulence intensity. Hence, 
adequate design of the partitions, as well as different 
arrangement of heating, may bring substantial 
improvements in building design and safety. A major 
prerequisite for a successful design is the ability to 
predict the details of the flow pattern and turbulence 
field and the distribution of the heat transfer 
coefficient along the non-isothermal walls. Similar 
challenge arises also in other applications, such as 
nuclear engineering, or in natural cooling of electric 
and electronic equipment, where high temperature 
differences may also lead to Ra numbers sufficient to 
promote the turbulence in spite of relatively small 
dimensions. 

Even an empty, undivided two-dimensional (2D) 
enclosure possesses a number of features pertinent to 
complex buoyant flows. The fluid motion, induced by 
the buoyancy force due to the heat transfer along the 
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NOMENCLATURE 

C empirical coefficients in the turbulence w 
model W 

g~ gravitation vector x~ 
h heat transfer coefficient x 
H enclosure height y 
Hob  length of the partition measured from 

the ceiling 
k 0.5u~u~, kinetic energy of turbulence 
L enclosure length /~ 
Null  = h i l l 2 ,  Nusselt number based on the 

enclosure height e 
NuL = hL/2 ,  Nusselt number based on the 

enclosure length ~0 
Pet = Ret Pr, turbulent Peclet number 

g, go 
Pr  = vice, Prandtl number 
R a  = Rayleigh number q 
Ran  = ~gATH3/vc~,  Rayleigh number 2 

based on the enclosure height 
RaL = ~ g A T L 3  / w ,  Rayleigh number based v 

on the enclosure length 
Ret = k2/ve, turbulence Reynolds number P 

'C 
T mean temperature 
To = AT = Th-- Tc reference temperature 

"C o 
scale 02 

u~ turbulent fluctuation of the velocity 
vector 

Ui mean velocity vector 
= (/~gA Tv) j/~ reference velocity scale 

u~uj turbulent stress tensor 
Ou~ turbulent heat flux vector 

aperture width 
enclosure width 
space coordinates 
= x~, horizontal coordinate 
= x2, vertical coordinate. 

Greek symbols 
temperature diffusivity 
thermal expansion factor 
dissipation rate of the turbulence 
kinetic energy 
dissipation rate of the temperature 
variance 
homogeneous parts of e and e0 
empirical coefficient, equation (1) 
empirical coefficient, equation (1) 
thermal conductivity 
dynamic viscosity 
kinematic viscosity 
fluid density 
k/z ,  mechanical time scale of 
turbulence 
0~/2e0, thermal time scale of turbulence 

temperature variance. 

Subscripts and superscripts 
h hot wall 
c cold wall 
t turbulent. 

enclosing non-adiabatic walls, is characterized by two 
distinct patterns: the boundary layers along the walls 
and the encircled recirculating motion in the core. The 
two patterns interact only weakly at their interface 
and have essentially different turbulence structure, 
characterized by different turbulence scales. The rot- 
ating core can develop multicellular pattern with sev- 
eral rolls, depending on the wall conditions, cavity 
aspect ratio and Rayleigh number. If the fluid is tur- 
bulent, in addition to the mean flow recirculation in 
form of regular-shaped rolls, turbulent fluctuations 
can form well organized coherent structure, pertinent 
particularly to the cases with heating from below. 
These organized motions and a strong mutual inter- 
action between the thermal and mechanical tur- 
bulence pose a particular challenge to the modelling 
of the flow and heat transfer by single-point averaging 
closure models, which per se do not recognize any 
turbulence coherence. 

An additional problem is the treatment of the tur- 
bulent-molecular and viscid-inviscid interactions 
which are often significant in some regions of the flow, 
even at high bulk R a  numbers. In fact the transition 
to turbulence in natural convection in enclosures 
occurs at relatively high R a  numbers and in most cases 

of practical relevance (space heating, flow in building 
structures, cooling of nuclear reactors and of elec- 
tronic and electrical equipment) turbulence is sig- 
nificant only in some regions of the flow domain. A 
reliable computation model is expected to capture and 
reproduce not only the transition itself, but also its 
location and adequate dynamics of the turbulence 
evolution, including the turbulence decay away from 
solid walls. In the case of vertical non-adiabatic walls, 
the largest buoyancy effects are usually encountered 
very close to the wall where the viscous effects are still 
substantial and the computation of the flow and heat 
transfer requires a proper account of molecular effects 
and integration up to the wall, even though the wall 
boundary layer may be fully turbulent. On the other 
hand, free convection over horizontal heated surfaces 
becomes turbulent almost instantly as soon as the R a  
number exceeds the critical value, and the momentum 
and heat transfer occurs through the vertical pen- 
etration of turbulent fluid due to buoyancy, irrespec- 
tive of the temperature gradient in that direction. 

In spite of the fact that these and other mentioned 
features seem hardly tractable by the current single- 
point closure modelling, this approach in conjunction 
with numerical computations still remains the only 
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feasible way of predicting the turbulent flow and heat 
transfer distribution in natural convection in complex 
geometries. 

Natural convecti on in empty and partially divided, 
2D and 3D enclosures has been investigated both 
experimentally and numerically, though in most cases 
the flow regime was laminar (e.g. [1-11]). Nansteel 
and Greif [1] investigated the problem in a small-scale 
laboratory 2D model of an enclosure of aspect ratio 
H : L  = 1:2 with different partial division hanging 
from the top wall, using water (Pr ~ 3.5-7). The 
experiments were performed for Rayleigh numbers, 
RaL, based on the enclosure width L and wall tem- 
perature difference'. AT, in the range of 101°-1011. In 
all considered case,; the flow remained essentially lami- 
nar, exhibiting the same flow pattern independent of 
the Rayleigh number for the range considered. From a 
later study in a 3D geometry with opening of different 
breadths in the pa:rtitioning wall, Nansteel and Greif 
[2] concluded that three-dimensionality had a strong 
effect upon the flow pattern behind the partition, pro- 
ducing at RaL ~ 1011 intensive turbulence. Contrary 
to the 2D enclosures, the 3D partitions were found 
to have a destabilizing effect on the flow. However, 
because the turbulence remained confined to the 
region adjacent to the adiabatic ceiling, with boundary 
layer relaminarizing as soon as it encountered the 
cooled wall, there was a very small effect on the cross- 
cavity heat transfer. In view of the Prandtl number 
effect on the transition, one may expect a different 
outcome at the same Ra number with different fluids. 
Experiments in a similar small scale model with water, 
but with the aspect ratio of 1 : 3 and partitions rising 
from the floor and extending above the half of the 
enclosure height were reported by Lin and Bejan [4], 
who found somewhat different flow pattern with two 
velocity maxima in the return flow and about 50% 
smaller heat transfer rates than Nansteel and Greif 
[1]. They attributed the difference to several factors, 
primarily to different aspect ratio and conductivities 
of the partitions, but also to the measuring techniques 
applied and to uncontrolled heat losses. Olson 
et al. [5] reported on parallel experiments in a 
full-scale room of 1:3 aspect ratio, with air, and 
in a small scale model of the same geometry, using 
R-114 gas (Pr ,~ 0.8), both with partitions extend- 
ing from the bottom wall, for Rail (based on the 
enclosure height H) from 1.3× 10 l° to 3.4× 101° 
(Ra L = 4.1 - 9.8 x 1011). They found that the flow pat- 
tern in all cases remained very similar, but detected 
turbulent boundary layers along all walls, as well as 
some secondary backward motion of the outer fluid 
at the beginning of the boundary layers along the 
hot and cold vertical walls. Although the considered 
geometry was three dimensional, the opening 
extended over the whole enclosure breadth, so that 
the appearance of' turbulence, as compared with the 
laminar regime in the case of Nansteel and Greif, was 
probably more a consequence of higher Ra number 
and lower Pr number, which enhances the transition, 

than of the 3D effects or possible radiation influence. 
Neymark et al. [8] reported an experimental study in 
a cubic enclosure with an adiabatic internal partition 
with centrally positioned aperture extending to the 
half height of the enclosure, but with different relative 
widths w / W  ranging from 0.01 to 1. They also per- 
formed a full-scale experiment with air and a small- 
scale experiment with water, in both cases with a con- 
stant heat flux at the hot wall, while maintaining the 
cold wall at a constant temperature. The Rail numbers 
considered, 5×1011-5×1012 for air and 4×1011- 
1 x 1013 for water are probably the highest exper- 
imentally achieved values reported so far. Flow vis- 
ualization in the water experiment at Ra = 2 × 1012, 
using dye injection, showed that the boundary layer 
along the hot vertical wall remained laminar, though 
with some waviness, for both aperture widths 
considered, w / W  = 0.01 and 0.2. However, in the first 
case, the jet-like motion exiting the aperture at about 
45 ° upwards was apparently turbulent, but laminar- 
ized again in the downward boundary layer along 
the cold wall. In the second case the fluid rose along 
the partition in form of a laminar plume, but the 
boundary layer along the cold wall developed into 
turbulent roughly at the midheight. In the air exper- 
iment at the same Ra number with aperture width 
w / W  = 0.2 the boundary layer along the hot wall was 
turbulent in the lower portion before it separated. On 
the basis of smoke visualization and hot-wire 
measurements at one station closer to the floor the 
authors concluded that the boundary layer along the 
cold wall was also turbulent for the range of Ra num- 
bers considered, though they do not give any indi- 
cation of the turbulence persistence over the whole 
wall length. 

One should also mention the direct numerical simu- 
lation of natural convection in 2D and 3D partitioned 
cubic enclosures by Fusegi et al. [9] for Ra = 10 7 and 
5 × 10 9, using the numerical grid distribution com- 
parable to our study. For higher Ra the time averaging 
gave a substantial level of turbulent stresses, but much 
lower level of the temperature variance, both spread 
over almost the complete domain. Due to extreme 
requirements for computing resources the authors 
cautioned that they were not able to reach a fully 
confident statistics within the computing time avail- 
able. It is interesting that the 3D computations for a 
partition extending across the whole cavity widths 
showed a great similarity with the 2D computations 
in regions away from the lateral walls, confirming 
that the effects of three-dimensionality in the central 
regions can be ignored. 

The present paper addresses the 2D natural con- 
vection in geometries similar to those investigated 
experimentally by the mentioned groups of authors. 
The computations were performed both for water and 
air, for empty and partitioned enclosures, simulating 
the aspect ratios and Rayleigh numbers as investigated 
in the mentioned experiments. The cases with air had 
realistic dimensions and boundary conditions cor- 
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responding to the situations encountered in full-scale 
room heating. We focused on the problem of detecting 
the turbulent regime and performed the computations 
with several models, aimed at testing their capabilities 
for reproducing the laminar-to-turbulent and reverse 
transition in buoyancy driven flows, location of tur- 
bulent zones in enclosures and turbulence effect on 
heat transfer along the surrounding walls. Because of 
the lack of detailed experimental data for more com- 
plex geometries, the applied models were first verified 
in empty cavities of different aspect ratios and bound- 
ary conditions. As illustrated, we present a selection 
of results for enclosures of aspect ratio H: L = 1 : 2 
and 1:3 with differential side heating, and an 
H: L = 1 : 1.5 enclosure with floor heating and cooled 
ceiling. The effect of inserting downward hanging par- 
titions of different height was studied in the enclosure 
of H: L = 1 : 2, which corresponds to the experimental 
case of Nansteel and Greif. Finally, results will be 
presented for a two zone enclosure, with a complete 
conductive partition, with floor heating in one zone 
and side cooling in the other, illustrating a more com- 
plex case with mixed boundary conditions. The model 
performance was validated by comparison with avail- 
able experimental data for some mean properties, as 
well as by qualitative comparison of flow patterns, 
particularly the appearance and location of turbulent 
regions in the flow. The computed average Nusselt 
numbers for different geometries were also compared 
with the available correlations. 

2. TURBULENCE MODELS 

The starting point of the considered variants of 
turbulence models is the algebraic expression for the 
turbulent heat flux derived from the parent full trans- 
port equations for the turbulent heat flux 

z ~ T  
0 u ~ . = - C z ( u , , ~ ? x j + ~ O ~ j ~ + q f l g , ~  ) (1) 

where z is the typical time scale of turbulence, assumed 
as z = k/~. The expression is closed by solving the 
transport differential equations for the turbulence 
energy k and its dissipation rate e, with adequate 
modification to account for the low-Re number 
effects. This enables the evaluation of z, as well as the 
turbulent stresses u~uj via the eddy viscosity formu- 
lation. In nonisothermal systems, the thermal scale 
r0 = ~/2e0 governs the dynamics of thermal tur- 
bulence (02 is the fluctuating temperature variance 
and t0 = ~(OO/axj) 2 its molecular dissipation), t0 can 
be supplied from the assumed constant scale ratio 
R = z/T0, or 02 and e0 can be obtained from their 
transport differential equations. The model for the 
turbulent heat flux can take various forms depen- 
ding on how many and what terms in the expression 
(1) are retained. The simplest level considered corres- 
ponds to the isotropic eddy diffusivity model known 
also as the simple gradient diffusion hypothesis, 

Oui = -Ck2/e(OT/~xO. This model was found inad- 
equate for free convective flows irrespective of bound- 
ary conditions. For example, in the case of vertical 
non-adiabatic walls the major heat flux responsible 
for the turbulence generation due to buoyancy (the 
component in the vertical direction), is expressed in 
terms of relatively small vertical component of the 
temperature gradient. In cases heated from below a 
mixed layer is formed with an almost uniform mean 
temperature profile not much correlated with the 
intensive upward turbulent heat flux. The next level is 
the application of the non-isotropic eddy diffusivity, 
known also as the generalized gradient diffusion con- 
cept [essentially the first term in the expression (1)] 
which improved substantially the prediction of natu- 
ral convection in tall cavities, but still did not produce 
results in full accord with the experimental data for 
most cases considered. Finally, we considered the 
complete algebraic expression (1) which accounts not 
only for the contribution of the mean velocity gradi- 
ents, but also for the mutual interaction between the 
different components of the turbulent heat flux, and 
for the contribution due to the temperature variance 
[the last term in the expression (1)]. The latter is 
usually expressed in__terms of the mean temperature 
gradient 02 = - Co(kOuj/e) (OT/~xj). However, a more 
detailed testing of, e.g. tall cavities with side heating 
and cooling revealed that only the solution of the 
differential transport equation for 02 and for its sink, 
eo =~(30/~xj) 2, reproduces accurately the tem- 
perature field in all parts of the enclosures of very high 
and very low aspect ratios. As will be illustrated later, 
satisfactory results can in most cases be obtained also 
by omitting the transport equation for e0 by assuming 
a constant ratio of time scales Zo/Z ~ 0.5, which sim- 
plifies to a great degree the application of the model 
to the computation of complex flows. 

In order to reproduce the laminar-to-turbulent 
transition along the bounding walls, the model should 
account for molecular effects. The low-Re-number k- 
e model of Jones and Launder [12] provides a reason- 
able framework. Although designed to model the tur- 
bulence damping in the viscous sublayer adjacent to 
a solid wall, the model proved to be capable of repro- 
ducing the reverse transition (laminarization) in accel- 
erating flow, and also some cases of by-pass transition 
in an isothermal boundary layer, none of which is 
directly related to the wall vicinity. This model is one 
of few among many of a kind, in which the damping 
functions are expressed in terms of an invariant prop- 
erty, the turbulence Reynolds number Re = k2/ve, not 
dependent directly on the distance from the wall, nor 
on wall topography. This feature is important for 
modelling natural convection at transitional Rayleigh 
numbers, with weak turbulence field appearing only 
in some regions of the flow domain. Accurate pre- 
diction of the turbulence interaction with non-tur- 
bulent fluid away from the wall may require additional 
modification of the model and its verification in the 
prediction of homogeneous buoyant turbulence. 
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However, any model deficiency in this respect may 
only influence ttLe results in the outer edge of the 
turbulence zone where the turbulent fluctuations of 
velocity and temperature decay freely, without affect- 
ing much the mean velocity and temperature field, nor 
wall heat transfer. Following these arguments we have 
adopted Jones-Launder-Sharma low-Re-modi- 
fications for the k and e equation and analogous modi- 
fications for molecular effect in the 0 ~ and e0 equations. 
These modifications are expected to provide for the 
molecular and wall effects on turbulent heat flux 0u~ 
through the adjustment of the time scale z and other 
variables in equation (1). This approach may not 
satisfy the exact conditions at the wall. To meet these 
constraints, the equation (1) should include the term 
e~ which has been neglected here and the coefficient C 
replaced by a function in terms of turbulent Peclet 
number. Howew:r, the expression (1) in conjunction 
with the three- ~.nd four-equation models here con- 
sidered, showed to reproduce well the natural con- 
vection in a boundary layer along the heated vertical 
plate and in rectangular cavities (Hanjali6 and Vasi6, 
[13]) and was adopted in the present work. 

The following set of equations in conjunction with 
expression (1) constitute the adopted model: 

D(~,~) 
r'bt - Do+2pPo--2p~o (2) 

D(pk) 
-D-t-- = Dk + riP+ p G -  pe (3) 

D(p0 _ D~ + C~, g g2 
Dt p(P+G)~-G2f~p~+E+S, (4) 

D(pgo) ,o eo C o _ ,  go 
Dt = D,o+C~lpP~ + ~3pro~ 

g~, o gog 
-C°2p~-C,4 f~oP T + Eo (5) 

where 

- -  3Uj - -  - -  d T 
P = --uluj -----, G=--flgiOui; Po = -Otlj ~xj ; ~xj 

(6) 

2 ,at f d2Ui "~2 f a2T  "~2 

e 2v(i)(k)'/:~ 2 /'a(~-) 1/2~: e = -  j ) (8) 

0 ['C ~ k2 c3~p ac~) 
De, = ff~xj [ ' ee./.,,p T ff~xj +.u ~xj (9) 

where Ll = kS/2/s and l = 2.5xn. The model contains 
the two damping functions: 

i - 3 . 4  1 f~ = exp Re-~--t~; f '  = 1-0"3exp  (-RetZ)' 

j 
(11) 

Here P and G stand for the turbulence energy pro- 
duction by strain and buoyancy respectively, Po is the 
production of temperature variance, while E and Eo 
account for molecular effects. D denotes the total 
diffusion term in which the turbulent part was mod- 
elled by the simple gradient hypothesis. The last term, 
$1 in the gequation is the correction attributed to Yap, 
(Ince and Launder, [14]), which damps the excessive 
growth of the length scale close to the wall and was 
found to improve the reproduction of the dissipation 
in the wall vicinity as well as numerical stability. It 
should be mentioned that the model can give similar 
results by omitting & term, but the coefficient C has to 
be slightly adjusted. Turbulent stresses were computed 
from the eddy viscosity expression 

2 //~U i q- ~Uj~ 
u~J = 3k(~iJ - ~)t ~ x j  ~xiJ '  

where vt = 0.09 f~k2/g. The function f~o(Pet) should 
ensure a transition from the initial to the final stage 
of decay of the temperature variance when Pet falls 
bellow the critical value in the same manner as the 
function f~ does for the velocity fluctuations. In 
absence of reliable data for model validation, this 
function was assumed 1, in anticipation that for fluids 
with Pr numbers close to unity, the thermal turbulence 
will follow closely the dynamics of the mechanical 
turbulence. Any inadequacy in this assumption may 
only marginally influence the predictions of the tur- 
bulence field at the very edge of a turbulence region. 
The following coefficients were adopted. 

C ~ U C~ C~1 Ct2 C 0 C O, C02 C03 C04 

0.2 0.6 0.6 0.07 1.44 1.92 0.07 0.72 2.2 1.3 0.8 

3. NUMERICAL METHOD 

Numerical computations were performed by a ver- 
sion of finite volume Navier-Stokes solver for 2D 
flows in orthogonal coordinate system, adopted from 
Demird2i6 and Peri6 (e.g. [15]). Staggered grid, clus- 
tered toward the walls was employed with typically 
80-120 grid points in both coordinate direction for 
each zone on both sides of the partition. SIMPLE 
algorithm was used for the treatment of the pressure 
field. The solutions were obtained by false time march- 
ing, employing the Stone's strongly implicit iterative 
lower/upper (ILU) method. More details about the 
testing of the applied numerical method for natural 
convection were reported in ref. [16]. 
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4. SOME RESULTS 

In order to illustrate the performances of the model, 
we present first some results for empty enclosures with 
moderate aspect ratios between 1 : 1 and 1 : 3, which 
correspond more closely to situations encountered in 
room heating. Two types of typical boundary con- 
ditions have been considered: differential heating of 
the vertical side walls and differential heating of hori- 
zontal walls from below. In both cases the remaining 
two walls were kept adiabatic. 

4.1. Undivided short enclosures with bottom heatin# 
The first example is an enclosure with aspect ratio 

H: L = 1 : 1.5 with heated floor and cooled ceiling. 
Unlike in side-heated enclosures, where the turbulence 
may occupy only a portion of the flow domain, in the 
case with heating from below the fluid in the enclosure 
becomes turbulent in the whole flow domain as soon 
as the Ra number reaches the critical value of ~ 5 × 104 
(here the Ra number is defined with the enclosure 
height H which is the natural characteristic dimension 
of the flow). In slender horizontal enclosures of small 
aspect ratio, H: L << 1, the regular laminar roll-cells 
break, to be replaced by thermals rising vertically. It 
is generally believed that in a fully turbulent regime 
in slender domains, like in the case of parallel infinite 
plates, no cellular patter exists and the statistical aver- 
ages of the properties vary only in the vertical direc- 
tion. However, it has been noticed, e.g. by Chu and 
Goldstein [17], that a further increase in the Ra num- 
ber above the critical value will induce a horizontal 
fluid motion along the horizontal boundaries from 
which thermals break periodically, upwards from the 
bottom wall and downwards from the top one, at 
relatively f i x e d  sites. This suggests that a pair of ther- 
mals may create a rotating roll so that in the turbulent 
regime also the flow pattern takes the form of a series 
of roll-cells, though not so orderly as in the laminar 
regime, and not so easily detectable by visualization 
technique due to strong fluctuation of the velocity and 
temperature field. The formation of roll-cells will be 
enhanced by the side walls in enclosures and the effect 
will be stronger if the side walls are closer, i.e. at 
moderate aspect ratios. In enclosures with aspect ratio 
close to unity, at lower Ra numbers the flow pattern 
may develop more than one cell due to shorter periods 
of instability at which thermals part from the bound- 
ary layers, but at higher Ra numbers the momentum 
of the horizontal motion increases and the enclosure 
is filled basically with a single roll occupying almost 
the whole flow domain, with possibly some small sec- 
ondary rolls in the corners. The dominant rotating 
motion can take any direction of rotation. In nature 
the direction will depend on the initial disturbances, 
whereas in numerical computations starting with a 
uniform field and boundary conditions, it will take the 
direction in which the solution sweeps are performed. 

Of course, none of the sort of organized unsteady 
patterns can be reproduced by single-point model 

based on Reynolds averaging. Higher order tur- 
bulence models have shown to reproduce the stat- 
istically averaged mean temperature and turbulence 
field in 1D steady and unsteady buoyant convection 
over a heated horizontal plate or between the two 
infinite plates featuring strong temperature gradients 
in the vicinity of both horizontal walls and a well 
mixed core with almost uniform distribution of the 
mean temperature and linear vertical turbulent heat 
flux, in good agreement with experiments (Hanjali6 
and Vasi6, [13]). In the case of short enclosures, the 
2D numerical computations yield invariably a circular 
motion of the bulk flow and this pattern persists at 
much higher Ra numbers, than reported in exper- 
iments. Indeed, at high Ra numbers the flow vis- 
ualization becomes difficult and not much information 
can be found in literature for higher Ra numbers. 
Besides, in most experimental works the measure- 
ments are taken only at one cross-section, usually in 
the middle of the enclosure and no exploration of the 
horizontal variation of flow properties, nor are details 
in the enclosure corners are known to us. We believe, 
therefore, that the computed rotating pattern in short 
enclosures, even at relatively high Ra numbers with 
strong turbulence, may correspond to reality. As an 
illustration, Fig. 1 shows the results of computations 
of some of the properties for Ra = l0 s, obtained by 
the four-equation model. 

As seen, in spite of a relatively short width, in the 
bulk portion of the flow, excluding the corners, the 
variation of flow properties in horizontal direction is 
almost negligible. All thermal properties show high 
gradients in the wall boundary layers, with almost 
uniform distribution in the enclosure core. Figure 2 
shows the computed temperature profiles for a range 
of Ra numbers, from 10 6 to 101°. The measurements 
by Chu and Goldstein [17], for Ra = 4 × 105 are also 
shown for comparison. It is interesting to note that 
the mean temperature exhibits an inversion, as found 
experimentally by Chu and Goldstein, which is in fact 
a consequence of the rotating motion. 

Another interesting feature is the diagonal sym- 
metry of the flow pattern, in spite of the vertical sym- 
metry of the enclosure geometry and boundary con- 
ditions. The flow pattern tends to develop small 
secondary rolls in the downstream corners of each 
adiabatic vertical wall, as shown in Fig. 1 for 
Ra = 108. These secondary rolls and the adjacent por- 
tions of the boundary layers on the horizontal non- 
adiabatic walls are characterized by a high con- 
centration of both the mechanical and thermal tur- 
bulence, particularly of 0 2 and 0u2, enhancing the heat 
transfer on non-adiabatic walls, as illustrated by con- 
spicuous peaks of the Nusselt number, Fig. 3. Less 
pronounced peaks of the Nusselt number appear also 
in the downstream ends of the boundary layers. It is 
interesting to note that at higher Ra numbers, like in 
the case for Ra - -  l 0  9, the distribution of the Nusselt 
number is more uniform over the large portion of the 
wall with peaks in the upstream regions of the wall 
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Fig. 1. Computed mean and turbulence properties in a rectangular enclosure heated from below, 
H: L = 1 : 1.5, Ra = 10 8. 

boundary layer just  after the fluid encounters the non-  
adiabatic wall, wtereas the secondary peaks at the 
end of the boundary  layers disappear completely. Like 
in other examples with different aspect ratio (e.g. Hart- 

jali6 [18]), especially in cases with heating from below, 
these findings substantiate the importance of field 
computations for each particular case and Ra number,  
if the application requires a more accurate knowledge 
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Fig. 1--continued. 

of the heat transfer distribution along the non- 
adiabatic walls. 

The lack of experimental or other data for field 
properties does not leave much opportunity for veri- 
fying the computed field results, except to compare 
the computed average Nusselt numbers with several 

correlations, available in literature. Two correlations 
proposed by Chu and Goldstein, N u  = O . 1 2 3 R a  °294 

for air [19], and N u  = O . 1 8 3 R a  °27~ for water [17], 
both obtained for a range of aspect ratios, including 
the 1 : 1.5, here considered, and claimed to be valid 
for R a  <% 108, agree well with our results for lower 
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Fig. 2. Computed temperature profiles in the vertical cross-section at the middle of the enclosure heated 

from below, H: L = 1 : 1.5, Ra = 10610 ~°. 

Ra numbers. For example, for Ra = 10 6 and 10 7 the 
computations yielded the averaged Nusselt numbers 
7.7 and 16.2, respectively, as compared to 7.14 and 
14.1, obtained from the correlation for air, or to 8.52 
and 16.16, obtained by the correlation for water. How- 
ever, for higher Ra numbers the discrepancy increases. 
Other expressions available in literature (see e.g. Geb- 
hart et al. [20]) giw~ similar, though somewhat lower 
values, but still within the 15% at these two Ra 
numbers. At higher Ra numbers our results agree 
better with correlations which use higher exponent of 
the Ra number (closer to 1/3), as implied, e.g. by 
the correlation of Dropkin and Somercales (1965) (in 
[201), Fig. 4. 

The overall agreement can be regarded as satis- 
factory, qualifying ,Lhe model for use in more complex 
geometries. Very similar results, particularly for the 
Nusselt number distribution, were obtained by the 
three-equation model, with a constant time scale ratio 
R = 0.5, Fig. 3(b), though the distribution of R, 
obtained from the four-equation model varies con- 
siderably in the enclosure domain. This illustrates a 
relative insensitivity of the model, at least in these 
simple geometries, to the choice of R, which is rather 
fortunate, since the three-equation model is much sim- 
pler to use and involves less number of empirical 
coefficients and ass ociated uncertainty. In view of the 
need to arrive at a :model which can be applied to 3D 
domains of complex geometry, this finding is regarded 
as very useful and further presentation of the results 

t Unlike in the case with heating from below, for side 
heated enclosures bolh the height H and the length (width) 
L of the enclosures are employed in literature for defining 
the Rayleigh number. For comparison with experimental 
data, both definitions are used in the text that follows. 

will be confined mostly to those obtained with the 
three-equation algebraic flux model. It should be poin- 
ted out, however, that the use of the isotropic eddy 
diffusivity (denoted as SGDH) model resulted also in 
reasonably good agreement at lower Ra numbers, but 
always yielded smaller Nusselt numbers, with the 
difference progressively increasing as the Ra number 
increases, as shown in Fig. 4. 

4.2. Undivided enclosures with side heatin 9 
We move now to consider the side heated empty 

and partitioned cavities. The first in this series of 
examples is a 2D side heated 1 : 3 rectangular enclos- 
ure, representing a typical empty building space with 
realistic dimensions, H = 2.5 m, L = 7.9 m and side 
wall temperatures of ~ 30 and 10°C, yielding the Rail 
of 3 x 10 ~° (Ral ,~ 9.5 × 10~). t This case was selected 
to match the experimentally investigated full-scale 
room ofOlson et al. [5]. Although Oslon et al. detected 
some sort of turbulence, our computations using vari- 
ous models yielded laminar solutions irrespective of 
the initially imposed turbulence field. By increasing 
the Ran to ~ 1.5 × 10 l~ the algebraic model with both, 
the three and four scalar transport equations, yielded 
solution with a weak turbulence field concentrated in 
the downstream portions of the boundary layers along 
the vertical non-adiabatic walls, but the flow pattern 
remained generally the same as for the laminar solu- 
tion. The case appeared to be numerically very chal- 
lenging because of a weak communication between 
the hot and cold wall over the span of three heights. 
Figure 5 illustrates some interesting features of the 
velocity and temperature field which agree quali- 
tatively with those observed by Olson et al. [5]. Strong 
wall-jet like motion develops along all walls, with an 
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Fig. 3. Nusselt number distribution along the bottom and top non-adiabatic walls in an enclosure with 

H: L = 1.5. (a) Rail = 107 and (b) Rail = 2.2 x 109. 

almost stagnant core region. The boundary layers 
along the horizontal walls are visibly thicker than 
those along the vertical walls. However, contrary to 
the common perception of unidirectional flow along 
all walls, the computations produced two loops with 
backflows in the downstream regions of boundary 
layers along the vertical walls, and thin recirculating 
regions adjacent to the horizontal walls in the upper 
left corner (near the hot wall) and lower right corner 
(near the cold wall), Fig. 5(b). Due to intensive heat- 
iPg, the fluid adjacent to the hot vertical wall accel- 
erates continuously, reaching the maximum velocity 

in the corner just before hitting the upper horizontal 
adiabatic wall. Strong momentum drives the fluid 
within the boundary layer too fast to be fully heated, 
so that its outer mass remains cooler and heavier than 
the inner layer, but also cooler than the outer core 
fluid, causing its downward motion. The same anti- 
symmetric flow pattern occurs along the cold wall. 
This backflow is more pronounced at higher Ra num- 
bers and in the turbulent regime. 

A similar flow pattern was observed experimentally 
by Olson et al. [5], except that the turning of the fluid 
backwards occurred earlier along the wall. 
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Fig. 5. Computed wflocity vectors (a), streamlines (b) and 
isotherms (c) in a side heated 1 : 3 cavity at Rail = 3 x 10 m. 

The computed Nusselt numbers at several Ra 
numbers, including both the laminar and turbulent 
regimes, agree well with the available correlations, 
particularly for lower Ra numbers. For  Ra. = 3 × 101° 

(laminar regime) the computed Nusselt number of  
Nu.  = 131 agrees within 1% with the correlation 
Null = 0.31Ra °25 of  Bohn et al. (1984) and within 
6% with the correlation Null = 0.60Ra~/226 of  Nan- 
steel and Grei f  [1] for 2D enclosures. For  
Rail = 1.5 × 10 H the computed Nu.  was about  14% 
higher than the value from the above mentioned lami- 
nar flow correlation of  Nansteel and Greif, which is 
expected in view of  the fact that our computations 
produced turbulence at this Ra number. 

We consider next the enclosures of  a more moderate 
aspect ratio, H :  L = 1 : 2, which served as a basic con- 
figuration for the investigation of  partit ioned side- 
heated enclosures by Nansteel and Greif  [1, 2], Fig. 6. 
The dimensions H = 3.65 and L = 7.30 m and the 
wall temperatures Th = 35 and Tc = 5°C, yield the 
Rayleigh number based on the cavity length 
RaL = 1.2 × 1012 (Rail = 1.5 × 10H). These parameters 
have been selected to simulate a higher Ra number 
situation encountered in space heating. This Ra num- 
ber is almost one order of  magnitude higher than in the 
small-scale water experiment of  Nansteel and Grei f  [1, 
2], but close to the full scale experiment of  Olson et 
al. It should be recalled that Nansteel and Greif  [1] 
invariably found laminar flow in 2D enclosures with 
or without partit ion in the range of  Ra numbers con- 
sidered. Our computations for the same Ra numbers 
also yielded laminar solutions irrespective of  the initial 
turbulence field, which agreed very well with the 
measurements and observed pattern of  Nansteel and 
Grei f  (Hanjali~ and Vasi~ [10]). However,  when using 
air and enclosure dimensions and temperatures cor- 
responding to a full scale application, the com- 
putations showed a persistent turbulence, though con- 
fined to very narrow regions adjacent to the walls, as 
illustrated by the contours of  turbulence Reynolds 
number Ret = k2/v~, Fig. 6(d) (similar patterns follow 
other turbulence parameters, not  shown here: tur- 
bulent kinetic energy k, temperature variance 02 and 
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m m 

component of the turbulent heat flux 0u, and 0uD. 
Significant turbulence is concentrated in the upper 
region of the hot wall and in the lower region next to 
the cold wall. Note that the contour values have been 
selected with constant increment to avoid any arbi- 
trariness in representing the extent of significant 
values of considered properties. With respect to this, 
it is interesting to note that the turbulent Re number 
extends considerably further into the 'nonturbulent'  
fluid than the kinetic energy itself (or the temperature 
variance), due to a large increase of the length scale 
at the edge of turbulent zones. 

Unlike a simple recirculation along the walls with 
almost stagnant core, as usually assumed in empty 
enclosures, the computed flow pattern displays two 
loops with reverse motions in the outer parts of the 
wall layers, adjacent to the downstream parts of both 
vertical walls, Fig. 6(a) and (b). This flow reversal 
generates a shearing transverse motion at the mid- 
height plane of the enclosure, which was not detected 
in the previous case with 1 : 3 aspect ratio. Along the 
horizontal adiabatic walls the flow develops in a wall- 
jet type of boundary layer. After encountering the hot 
wall, the boundary layer at the floor turns upward. 
Transition to turbulence is detected around the mid- 
height. Although the heat transfer is enhanced by 
turbulence, as in the previous case with H: L = 1 : 3 it 
does not seem to be sufficient to heat the complete 
mass of fluid within the boundary layer so that the 
low-momentum outer fluid, cooler then the fluid in 
the inner wall layer, but also than the fluid in the 
enclosure core, turns downwards in the form of an 
accelerating jet. This downward motion encounters 
the cooler fluid from below and close to the enclosure 
midheight turns into the horizontal direction toward 
the cold wall across the central portion of the 
enclosure. An antisymmetric pattern develops in the 
cold wall region. It is interesting that the computations 
produced the largest velocities in the backflow just 
before the fluid turns toward the opposite wall. 
Another peculiarity is the shear layer in the central 
zone of the enclosure. This backflow of the outer fluid 
along the vertical walls resembles closely that found 
by Olson et al. [5] in their 1 : 3 cavity, but their back- 
flow was weaker, extending at a shorter distance 
before turning toward the opposite wall, so that in 
their case two loops, separated by a stagnant core, 
were detected. In the experiments the counter motion 
of the fluid occurs in a layer adjacent to the wall 
boundary layer along the horizontal walls, whereas 
our computation for 1 : 2 aspect ratio yielded a recir- 
culating motion with two stagnant cores separated 
by a shear interface at the enclosure midheight. It is 
difficult to say how realistic are these predictions, but 
this pattern was obtained with all models tested. 

The computations yielded the Nusselt number of 
470, which is about 14% larger from the value 
obtained from the correlation of Nansteel and Greif 
[1] for 2D laminar convection at the same R a  number. 
Because our computations produced some turbulence 
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number, Ret. 

along the non-adiabatic walls, the larger Nusselt num- 
ber is expected. A similar increase in the Nusselt num- 
ber was reported by Olson et  al. who detected tur- 
bulent regime in their experiments. It should be noted 
that our computations of Olson et  al. empty enclosure 
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for somewhat smaller Ra number (Ra L = 9.8 x 101') 
gave a laminar solution with small recirculations in 
the initial portion of flow along the horizontal walls, 
resembling, at least in this region (but without a ver- 
tical backflow), the pattern depicted by Olson et al. 
The computed Nu L : =  414 agrees within 1% with the 
correlation Null = 0.31Ra~ 25 of Bohn et al. [21] and 
within 6% with correlations for 2D and 3D enclosures 
of Nansteel and Grcif [1, 2], Nun = 0.60Ra °~26 and 
N u  L = 0.762Ra°, "226, respectively. 

4.3. Partially divided enclosures with side heating 
Inserting an incomplete partition, suspended from 

the ceiling, or protruding upwards from the floor, 
causes substantial changes in flow patterns. At 
Ra = O(10 ~°) Nans~;eel and Greif detected laminar 
flow both in the 2D and 3D enclosures. In the first 
case the flow remained almost fully attached to the 
wall, bending sharply upwards after the partition, 
whereas in 3D cases with small opening breadth, the 
flow displayed a separation at the partition tip, as well 
as from the ceiling in the upper corner adjacent to 
the cold wall, before turning downwards. At 
Rae= O(10 ~1) their experiments showed no tur- 
bulence in the 2D geometry, whereas in the 3D flow 
transition occurred behind the partition at its inter- 
section with the ceiling, producing an intensive tur- 
bulence in the complete upper zone of the right part 
of the enclosure. Similar effects of the aperture in a 
3D enclosure was detected by Neumark et al. [8], 
except that in their experiments at Ra = 2 x 1012 with 
air they detected turbulence in the ascending bound- 
ary layer on the hot wall. 

Our computations for RaL = 1.2 × 1012 and with 
adiabatic partitions of different lengths, Hob/H = 0- 
0.75, with Hob/H increments of 0.125 (where Hob is 
the length of the partition measured from the ceiling), 
showed the presence of turbulent zones for all cases 
for Hob/H < 0.5, in accord with the findings of Neu- 
mark et al. [8], though the location of turbulent zones 
was different, as shown in Figs. 7 and 8 for 
Hob/H = 0.25 and 0.5, whereas for higher Hob/H the 
turbulence disappeared completely, as shown in Fig. 
9 for Hob/H = 0.75. 

The streamline patterns look, however, similar. 
Along the hot wall the flow resembles that in an empty 
cavity with a loop-.form downward backflow of the 
outer fluid which turns into a horizontal jet-like 
motion at the height just below the partition tip. Only 
a small portion of the fluid continues to flow along the 
hot wall, generating a very weak laminar circulation in 
the upper zone of the enclosure next to the hot wall. 
In the case of Hob/H = 0.25 a portion of fluid con- 
tinues to move downwards and then turns hori- 
zontally toward the cold wall, forming a weak shear 
layer roughly in the midzone of the lower unob- 
structed part of the enclosure. In this case the tur- 
bulence is confined to the regions adjacent to vertical 
walls. In the case of Hob/H = 0.5 the jet-like horizontal 
motion at the cavity midplane entrains almost all fluid 
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from the boundary layer, so that the upper left region 
of the enclosure is almost stagnant. There is also very 
little air movement in the core of the lower unob- 
structed portion of the enclosure, so that the whole 
hot-wall zone of the cavity is practically non-turbu- 
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lent, in spite of  a relatively high Ra number. However, 
a strong recirculation is generated in the upper right 
zone between the partition, ceiling and the cold wall. 
Although there is no visible separation in this region, 
an intensive turbulence is generated with turbulence 
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Fig. 9. Computed mean flow properties in a partially divided 
side heated rectangular enclosure, H: L = 1 : 2, 

Hob/H = 0.75,  RaL = 1.2 × 1012. 

Reynolds number Ret = k2/ve reaching almost 2000. 
The turbulence is partly convected down the cold wall 
where additional production occurs, creating another 
high Ret zone at the midheight of  the cold wall, with 
significant temperature fluctuations and a consequent 
turbulent heat flux, although the kinetic energy is rela- 
tively low as compared with that in the corner behind 
the partition. It should be noted that this pattern very 
much resembles that observed by Nansteel and Greif 
[2] in their 3D enclosures with the small breadth open- 
ing in the partition. 

In the absence of  other data for verification of the 
obtained results we compared the mean temperature 
and velocity profiles in the two cases with partitions 
with the measurements of  Nansteel and Greif [1] and 
of Lin and Bejan [4]. Figure 10 shows the comparison 
of  the vertical mean temperature profiles at three sta- 
tions: below the partition and in the middle of  both 
zones for Hob/H = 0.5 and 0.75. In both experiments 
the flow was laminar. In spite of  the fact that our 
computations yielded turbulence in some parts of the 
enclosure for Hob/tI = 0.5 the compared temperature 
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profiles in both cases considered showed very good 
agreement. The experimental data in the upper region 
indicate some heat losses through the upper wall, caus- 
ing the wall temperature to drop below the maximum 
fluid temperature. These losses were not  accounted 
for in the computations,  hence a discrepancy between 
the calculated and measured profiles in the upper 
zone. 

Figure 11 shows the computed velocity profiles at 
selected vertical cross-sections for two cases with 
Hob/tI  = 0.5 and 0.75, showing in both cases a con- 
spicuous jet  across the enclosure at the height just 
below the partit ion tip, reaching the maximum vel- 
ocity at the partition. A counterflow develops below 
the jet, exhibiting two velocity maxima. An almost 
identical flow pattern was detected experimentally by 
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Fig. 11. Computed velocity profiles at selected vertical cross-sections in partitioned enclosures, H: L = 1 : 2, 
RaL = 1.2 × 1012: (a) H o b / H  = 0.5 and (b) H o b / H  = 0.75. 

Lin and Bejan [4], save for the absolute values, which 
are different due to the difference in the Ra numbers. 

The effect of  the partit ion length upon the heat 
transfer on the non-adiabatic walls is illustrated in 
Fig. 12 showing the distribution of  the Nusselt number 
along the left and right wall for five different cases of  
partit ion height. The laminar-to-turbulent transition, 
characterized by a sudden increase in the Nusselt num- 
ber, after a monotonic  decrease, is visible for all cases, 
and corresponds to turbulence iso-contours in the pre- 
ceding diagrams. 

4.4. Enclosures with a complete conductive partition 
and mixed  boundary conditions 

The last example simulates closely a real situation 
encountered in space heating: two neighbouring 
rooms, each 2.6 m high and 3.45 m long, separated by 
a 0.12 m thick brick wall. The left room is heated from 
below (floor heating) with constant temperature of  
32°C, whereas the right room is cooled through the 

outer side wall, which is assumed to be at constant 
temperature of  7.5°C. The reference temperature is 
20°C. The resulting Rayleigh number, based on the 
enclosure height H is Ran = 4.5× l01°. The con- 
ductive partit ion acts as a heat sink for the left room, 
and as a heat source for the right room, but its tem- 
perature is obviously not  constant. The resulting flow 
pattern will depend strongly on the conductivity of  
the partit ioning wall. In order to consider a case with 
a strong interaction between the two rooms, we have 
selected a high conductivity wall, with 2 = 2.5 W 
m - l K  1, corresponding to chrome brick or similar 
material. 

Figures 13(a) and (b) show the mean velocity vec- 
tors and the mean temperature contours, respectively. 
Turbulence distribution is illustrated by the contours 
of  the turbulence Reynolds number, turbulent kinetic 
energy k, temperature variance, 02, and two com- 
ponents of  the turbulent heat flux 0ul and 0u2, Figs. 
13(c) and (e)-(h). 
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Conductive heal  removal along the partition cools 
the adjacent fluid Jn the hot  room, which accelerates 
downwards, generating a thin wall-jet type boundary 
layer and causing a recirculation motion of  the fluid 
along the surrounding walls in the clockwise direction. 
Heating of  the floor enhances this circulation, but 
the buoyancy in the vertical direction thickens the 
boundary layer along the horizontal walls, reducing 
the vertical width of  the almost stagnant core. Sig- 
nificant temperature gradients appear in the thin 

region along the non-adiabatic walls, whereas the rest 
of  the space has an almost constant temperature. Over 
the larger part of  the boundary layer on the floor, 
excluding the left downstream corner, the temperature 
profile in the mixed layer above the floor shows an 
inversion with a steep decrease from the wall tem- 
perature ® = ( T - T c ) / ( T ~ - T o )  = 1 to its minimum 
O ~ 0.80-0.85 in the outer part of  the layer, and 
increases back to the value of  about  0.88, which pre- 
vails in the rest of  the enclosure. 



1424 K. HANJALI(~ et al. 

VELOCITY VECTORS 
a .  ~ = 0 . 2 9 0 E 0 0 0  M / S  

'4 / . . - -  _ ~ ~ "  ~ \ \ \ ~  ~ / . . . .  ~. , , \ \ ~  

il . . . .  : : i  
I / ,  . . . .  , I 

b. 
TEMPERATURE ~ ~ " ~  
co~rouu ~ II I1.- 

^ 0 .320 [002  II I 
II o.3oolloo2 11 l 
C 0.290£002 II  ~ '  J 
0 0 .  21151[002 J i l l  
£ o.2eo110o2 l l~i  
F 0.28011002 I F  IP, 
13 0.24011002 ] l  II 
H 0.22011002 I I  r 
l 0.2001[[002 I I  k 

O. 10011002 III |1 
m 0.16o£0o2 III i 
L 0. 1401~002 Il l /1 
M o.t2olloo2 J l l / i  
N 0 . 1 0 0 [ 0 0 2  I I f  I 

C. 

TURBULENT RE NUMBER 
CONTOUI~ IOtY 

A O. 133(004 
B O, 124F'004 
C O. ! [4~"004 
O O. 10511004 
1[ 0.965£003 
F O. 87311003 
6 0.781(00.1 
H O. 81191[003 
l 0.$9711005 
J 0.5051100,1 
I[ 0.41311003 
t. 0.32111003 
H O. 22911003 
oN 0.137C003 

0.45911002 

I i 1 . . . .  

S 

1 0  

M 

6 

4 

2 

9 

0 

d. 
r / I,aO Z'. 

$ 

x/t~,035 

. . . .  i D l l  

S 

~ It..,o +s 

.$ 

(T-Ye) / ( rU-Tc)  

x/I,,,o 5 

. . . .  i 

! s 

Fig. 13. Mean flow and turbulence properties in a rectangular enclosure with full conductive partition and 
mixed boundary conditions; H:  L = 1 : 2.7, Ran = 4.5 × 101°. 
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Fig. 13. Continued. 

The turbulence properties show interesting pattern: the non-adiabatic walls. Again, the large length scale 
the mechanical turbulence of a substantial intensity in the central portion of the room gives rise to the 
occupies the whole hot room, whereas the thermal turbulence Re, number which is directly proportional 
turbulence remains significant only in the vicinity of to the ratio of the turbulent to molecular viscosity and 
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therefore is a good indication of the turbulent mixing. 
However, the velocity fluctuations, which influence 
the human comfort, take significant values mainly in 
the wall regions. The temperature variance is confined 
to even narrower regions adjacent to the non-adia- 
batic walls. 

The flow pattern in the neighbouring room has the 
characteristics typical for a side heated cavity at low 
Ra  numbers, exhibiting a strong temperature strati- 
fication with laminar circulation of the fluid in thin 
boundary layers along the surrounding walls. 

4. CONCLUSIONS 

The paper presented some results of a com- 
putational study of natural convection in undivided 
and partitioned 2D rectangular cavities with different 
boundary conditions, simulating real building enclos- 
ures. The solutions were obtained by means of an 
algebraic turbulent flux model, in conjunction with 
differential transport equations for turbulence energy 
k, temperature variance 02 and their dissipation rates 
e and e0, as well as with a simpler version of the model 
in which ~0 was evaluated on the basis of the assumed 
constant time scale ratio. The model incorporates the 
low-Re-number modifications and involves the inte- 
gration up to the wall. The same model was tested 
earlier in the computation of several simpler test cases 
with different boundary conditions, yielding satis- 
factory agreement with available experiments and 
direct numerical simulation for a range of Rayleigh 
numbers. The computational results in the present 
study were also verified by comparison with the avail- 
able experimental results for the mean temperature 
and velocity field in some of the considered 
geometries, with the visual observations of the flow 
patterns by other researchers, and with the cor- 
relations for the Nusselt number. The following major 
conclusions emerged from the study: 

(1) In all cases considered, the applied model gave 
plausible mean temperature and velocity fields. The 
computed profiles across the enclosures showed good 
agreement with the experimental data for all cases for 
which the data were available in the literature. 

(2) The model reproduced the flow patterns and 
some interesting features in accord with the visual 
observations reported by several authors for com- 
parable Rayleigh numbers, Of particular relevance to 
human comfort, fire and smoke spread, or cooling 
rates in electronic equipment, are the jet like hori- 
zontal flow at the partition tip across the partially 
divided enclosure, and backflow with double velocity 
maxima below the partition, as well as the counterflow 
in the outer region of the wall-jet type of the boundary 
layers along the vertical non-adiabatic walls. 

(3) For enclosures filled with air at higher Rayleigh 
numbers the computations in undivided and par- 
titioned 2D enclosures reproduced a persistent tur- 
bulence in some parts of the enclosures in accord with 

visual detection in experiments. Unlike the con- 
ventional eddy diffusivity model, such as low-Re-num- 
ber k ~ model, which reproduced turbulent regime 
erratically and only at substantially higher R a  num- 
bers than observed in experiments, the algebraic flux 
model proved capable of generating and maintaining 
the mechanical and thermal turbulence at Ra  numbers 
in accord with experimental findings. In cases with 
side heating and cooling the turbulence was found in 
regions adjacent to the non-adiabatic walls, influ- 
encing substantially the averaged heat transfer across 
the enclosure. 

(4) Comparison with the available data for Nusselt 
numbers, as well as with the heat transfer correlations 
for specific cases, showed generally good agreement, 
which was always within 15%. It is interesting to note 
that the computed results do not follow a unique 
relationship N u  = C R a  ~ over the considered range of 
Ra  numbers, as also found by experiments. The agree- 
ment with the existing correlations is better at lower 
Ra  numbers. In view of the fact that most available 
correlations were derived by curve fitting through the 
data obtained at lower Ra numbers, this result is 
expected. For higher Ra numbers, where the tur- 
bulence occupies larger portion of the enclosures, 
better agreement was obtained with correlations with 
higher values of the exponent n (close to 1/3). 

(5) In all cases considered, the computations yiel- 
ded strong variations of the Nusselt number along the 
non-adiabatic walls, with sudden increase at the onset 
of turbulence transition, the location of which 
depends on the Ra  number. This finding illustrates 
best the importance of reliable field modelling and 
computations, which can predict the detailed dis- 
tribution of the heat transfer coefficient along the walls 
and detect critical zones with extreme (high or low) 
heat transfer rates, as well as enable the optimum 
design of the geometry and heat load for each par- 
ticular application. 
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